翻訳と辞書
Words near each other
・ Orthogonal complement
・ Orthogonal convex hull
・ Orthogonal coordinates
・ Orthogonal Defect Classification
・ Orthogonal diagonalization
・ Orthogonal frequency-division multiple access
・ Orthogonal frequency-division multiplexing
・ Orthogonal functions
・ Orthogonal group
・ Orthogonal instruction set
・ Orthogonal matrix
・ Orthogonal polarization spectral imaging
・ Orthogonal polynomials
・ Orthogonal polynomials on the unit circle
・ Orthogonal Procrustes problem
Orthogonal symmetric Lie algebra
・ Orthogonal trajectory
・ Orthogonal transformation
・ Orthogonal wavelet
・ Orthogonality
・ Orthogonality (programming)
・ Orthogonality (term rewriting)
・ Orthogonality principle
・ Orthogonalization
・ Orthogonia
・ Orthogonia grisea
・ Orthogonia plana
・ Orthogonia plumbinotata
・ Orthogoniinae
・ Orthogonioptelum


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Orthogonal symmetric Lie algebra : ウィキペディア英語版
Orthogonal symmetric Lie algebra
In mathematics, an orthogonal symmetric Lie algebra is a pair (\mathfrak, s) consisting of a real Lie algebra \mathfrak and an automorphism s of \mathfrak of order 2 such that the eigenspace \mathfrak of ''s'' corrsponding to 1 (i.e., the set \mathfrak of fixed points) is a compact subalgebra. If "compactness" is omitted, it is called a symmetric Lie algebra. An orthogonal symmetric Lie algebra is said to be ''effective'' if \mathfrak intersects the center of \mathfrak trivially. In practice, effectiveness is often assumed; we do this in this article as well.
The canonical example is the Lie algebra of a symmetric space, s being the differential of a symmetry.
Every orthogonal symmetric Lie algebra decomposes into a direct sum of ideals "of compact type", "of noncompact type" and "of Euclidean type".
== References ==

* S. Helgason, ''Differential geometry, Lie groups, and symmetric spaces''

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Orthogonal symmetric Lie algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.